Your Basket 0 items - £0.00

Many problems involve three-dimensional objects or spaces. Pythagoras Theorem in 3D Shapes can be used as much with these problems as those in plane shapes.

The starter recaps applying Pythagoras Theorem as part of a larger problem involving the perimeter of a trapezium and square. The aim of this starter is for students to experience the range of problems that can be solved using the theorem. In this instance there are no obvious right-angled triangles yet the problem cannot be solved without Pythagoras.

When you work with 3D shapes it is important to look for and draw out right-angled triangles. Labelling the vertices of the triangle with the same label as those used in the 3D shape helps students to visualise it two dimensionally.

The base ABCG is in a horizontal plane and triangle ACD is in a vertical plane. First look at the right-angled triangle ABC and use Pythagoras’ Theorem to find length AC.

Next, look at triangle ACD. Label the length of AC that was found in triangle ABC, leave the answer in its most exact form as the root will be cancelled when squared. Use Pythagoras’ Theorem to work out length AD.

We work through the second problem as a class. I encourage students to draw the cuboid on one half of their mini-whiteboard and in the second half draw the right-angled triangles. Similar to the diagram above. It’s important to leave the working of the first example on the board to help students see the various stages.

The interactive Excel file can be used for additional practise before students work independently through the questions on the third slide and worksheet.

In the plenary students are challenged to find the total perpendicular height of a composite solid. In addition to this being a composite shape a new level of difficulty is added as students now have to use the hypotenuse to find a shorter side.

I like to set the problem shown below for homework after this lesson as it challenges students to link Pythagoras’ Theorem with volume of pyramids.

The diagram shows a pyramid.

ABCD is a square with lengths 8 cm.

The other faces of the pyramid are equilateral triangles with sides of length 8 cm.

Calculate the volume of the pyramid.

March 4, 2018

There are three common ways to organise data that fall into multiple sets: two-way tables, frequency diagrams and Venn diagrams. Having blogged about frequency diagrams before I thought I would write about how to draw a Venn Diagram to calculate probabilities. Recapping Two-Way Tables This activity works well to review two-way tables from the previous […]

February 25, 2018

Students learn how to find a percentage of an amount using calculator and non-calculator methods. As learning progresses they use decimal multipliers to find a percentage change and calculate a simple interest in financial mathematics. This topic follows on from Fractions, Decimals and Percentages and takes place in Year 8 Term 5. Calculations with Percentages […]

February 16, 2018

Back in May 2017 maths teachers around the country eagerly awaited the first exam for the new GCSE Mathematics syllabus. Proving geometrical relationships using algebra featured at grade 9. In Paper 1 of Edexcel’s test paper the last question of the higher tier looked like this. Edexcel wrote about student’s performance on this question in […]