Accuracy and Rounding

Students learn how to round a number to a given power of ten, decimal place and significant figure.  They use this knowledge to estimate solutions by rounding and finding the limits of accuracy of rounded numbers.  This topic takes place in Term 3 of Year 10 and follows properties of number.


Accuracy and Rounding Lessons


Prerequisite Knowledge

  • Recognise the value of a digit using the place value table.
  • Round numbers to the nearest integer or given degree of accuracy not including decimal place or significant figure
  • Calculate square numbers up to 12 x 12.

Success Criteria

  • use standard units of mass, length, time, money and other measures (including standard compound measures) using decimal quantities where appropriate
  • round numbers and measures to an appropriate degree of accuracy (e.g. to a specified number of decimal places or significant figures
  • estimate answers; check calculations using approximation and estimation, including answers obtained using technology
  • use inequality notation to specify simple error intervals due to truncation or rounding
  • apply and interpret limits of accuracy


Key Concepts

  • When rounding to the nearest ten, decimal place or significant figure students need to visualise the value at a position along the number line. For instance, 37 to the nearest 10 rounds to 40 and 5.62 to 1 decimal place rounds to 5.6.
  • When a value is exactly halfway, for instance 15 to the nearest 10, by definition it is rounded up to 20.
  • To estimate a solution it is necessary to round values to 1 significant figure in the first instance. However, students need to apply their knowledge of square numbers when estimating roots.

Common Misconceptions

  • When rounding to a significant figure the values that are less significant become zero rather than being omitted. For instance, 435 to 1 s.f. becomes 400 rather than 4.
  • Students often have difficulty calculating the upper bound of a rounded value. For instance the upper bound for a number rounded to the nearest 10 as 20 is 25 not 24.999.
  • When using inequality notation to describe the limits of accuracy there can be confusion with the direction of the symbols.

 

One thought on “Accuracy and Rounding

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Mr Mathematics Blog

Getting Ready for a New School Year

When getting ready for a new school year I have a list of priorities to work through. Knowing my team have all the information and resources they need to teach their students gives me confidence we will start the term in the best possible way.  Mathematics Teaching and Learning Folder All teachers receive a folder […]

Mathematics OFSTED Inspection – The Deep Dive

Earlier this week, my school took part in a trial OFSTED inspection as part of getting ready for the new inspection framework in September 2019. This involved three Lead Inspectors visiting our school over the course of two days. The first day involved a ‘deep dive’ by each of the Lead Inspectors into Mathematics, English […]

How to Solve Quadratics by Factorising

The method of how to solve quadratics by factorising is now part of the foundational knowledge students aiming for higher exam grades are expected to have.   Here is an example of such a question. Solve x2 + 7x – 18 = 0 In my experience of teaching and marking exam papers students often struggle with […]