Comparing and Summarising Data

Students how to calculate the mode, median, mean and range from a set of data in a list and stem and leaf diagram.  As learning progresses they use these measures of location to compare  two or more distributions.

This unit takes place in Term 2 of Year 7 and is followed by representing and interpreting statistical diagrams.


Comparing and Summarising Data Lessons

 



Prerequisite Knowledge
  • Solve comparison, sum and difference problems using information presented in a line graph
  • Complete, read and interpret information in tables, including timetables.
  • Interpret and construct pie charts and line graphs and use these to solve problems
  • Calculate and interpret the mean as an average.

Key Concepts
  • The mode is the most common item in a set of data.  It is the only average that can be used for qualitative data.  A data set can have two modes.  This is called bi-modal.
  • People often refer to the mean when using the word ‘average’.  It is the sum of the data divided by the sample size.  The mean takes into account every piece of data.
  • The median is the middle number when all the numbers have been put into ascending order.  The median can be between two numbers.
  • The range is the difference between the largest and smallest data values.  The range is a measure of distribution or consistency.
  • To compare data sets students should use the range and one or more of the averages.
  • A key is critical to interpreting stem and leaf diagrams.


Working mathematically

Develop fluency

  • Select and use appropriate calculation strategies to solve increasingly complex problems

Reason mathematically

  • Explore what can and cannot be inferred in statistical settings, and begin to express their arguments formally.

Solve problems

  • Begin to model situations mathematically and express the results using a range of formal mathematical representations.

Subject Content

Statisitics

  • Describe, interpret and compare observed distributions of a single variable through: appropriate graphical representation involving discrete, continuous and grouped data; and appropriate measures of central tendency (mean, mode, median) and spread (range, consideration of outliers)

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Mr Mathematics Blog

Rounding to a significant figure

When I teach rounding to a significant figure, I ask the class to discuss in pairs or small groups a definition for the word significant.  It is a word that all the students have heard before but not all are able to define. After 2 or 3 minutes of conversation I ask the students to […]

Calculating Instantaneous Rates of Change

When calculating instantaneous rates of change students need to  visualise the properties of the gradient for a straight line graph.   I use the starter activity to see if they can match four graphs with their corresponding equations. The only clue is the direction and steepness of the red lines in relation to the blue line […]

Converting Between Fractions, Decimals and Percentages

Fractions, decimals and percentages are ways of showing a proportion of something.  Any fraction can be written as a decimal, and any decimal can be written as a percentage.  In this blog I discuss how to use the place value table and equivalent fractions to illustrate how fractions, decimals and percentages are connected. You can […]