Your Basket 0 items - £0.00

Students learn how to plot and derive the equation of straight line graphs in the form y = mx + c. Learning progresses on from this to find the equation of parallel and perpendicular lines in the form ax + by +c = 0.

This unit takes place in Term 3 of Year 9 and is followed by graphical functions.

- Recognise and describe linear number sequences, including those involving fractions and decimals, and find the term-to-term rule.
- Generate and describe linear number sequences

- Plot graphs of equations that correspond to straight-line graphs in the coordinate plane;
- Use the form y = mx + c to identify parallel lines
- Find the equation of the line through two given points, or through one point with a given gradient
- Identify and interpret gradients and intercepts of linear functions graphically and algebraically

- Students often confuse linear graphs to have the same notation as statistical graphs.
- The gradient can be calculated from any two points along the graph. Not necessarily from the origin.
- A linear function does not have to pass through the origin.
- It is beneficial to create a table of results when plotting a linear function. The coordinate pairs arise from the x and y values.

January 26, 2020

Preparing students for a mathematics exam takes time, patience and careful planning. In this blog I will share my ideas for teaching students how to prepare for their final exams. These are strategies that have worked well for me and I have see work well for others. Creative writing to formulate ideas Students need space […]

January 13, 2020

To find the area of compound shapes students need to understand what the word compound means. Therefore, I ask students to discuss in pairs a definition for the word compound and to extend it to include the shapes below. As a result of their learning in science students agree that a compound can be defined […]

January 4, 2020

At the start of the Spring Term these are three main priorities for me as the Head of Mathematics.