Your Basket 0 items - £0.00

**Scheme of work: GCSE Higher: **Year 9: Term 3: Equations of Straight-Line Graphs

- Recognise and describe linear number sequences, including those involving fractions and decimals, and find the term-to-term rule.
- Generate and describe linear number sequences

- Plot graphs of equations that correspond to straight-line graphs in the coordinate plane;
- Use the form y = mx + c to identify parallel lines
- Find the equation of the line through two given points, or through one point with a given gradient
- Identify and interpret gradients and intercepts of linear functions graphically and algebraically

- Students often confuse linear graphs with having the same notation as statistical graphs.
- The gradient can be calculated from any two points along the graph. Not necessarily from the origin.
- A linear function does not have to pass through the origin.
- It is beneficial to create a table of results when plotting a linear function. The coordinate pairs arise from the x and y values.

September 22, 2023

A-Level Scheme of work: Edexcel A-Level Mathematics Year 2: Pure 2: 3D Vectors

September 21, 2023

Edexcel A-Level Mathematics Year 2: Pure 2: Parametric Equations