Mathematics Lessons

As a Head of Mathematics in the South East of England I am all too aware of the desperate shortage of mathematics teachers in secondary schools and the need to retain the good teachers we have to deliver outstanding mathematics lessons. Having interactive, engaging and lessons with good pace that are founded on conceptual understanding rather than learning by rote are key attributes to quality mathematics teachers.

At mr-mathematics.com we promote and share good practice.  In this blog I will demonstrate how good practice is incorporated into a mathematics lesson plan.

Interactive Mathematics Lessons

I created mr-mathematics.com because I wanted to share the lessons and resources I use every day with my GCSE and key stage 3 classes. Helping maths teachers deliver outstanding lessons to their students in this constantly changing profession is something I am passionate about and absolutely dedicated to. That’s why every lesson includes the following:

  • Lesson plan
  • Differentiated worksheet that can be used for homework, revision or extra in-class practice
  • Presentation file in Smart Notebook, Activ Inspire Flipchart and Microsoft PowerPoint format.

Lessons also include:

The flow of a maths lesson

The interactive mathematics lessons available on this site have a simple flow to them. First, a starter that reviews prior knowledge and blurs the transition into the main teaching phase. Second, the main teaching phase. Third, consolidating the learning. Fourth the plenary to assess the progress students have made to inform the start of the next lesson.

The Starter

The transition from what the students had been doing before the lesson to what we want them to learn needs to be immediately engaging and something they not only see the value in but something they will be successful at. Getting the starter right will ensure students demonstrate positive behaviour for learning whilst giving the teacher time to prepare for their new class. For most of the interactive lessons the starter tends to take between 6 to 8 minutes. Every lesson contains a starter that is designed to be tackled by the students with minimal instruction from the teacher as they either follow a previous lesson or can be worked on through intuition.

Mathematics Lessons

Starter activity for a lesson on Velocity – Time Graphs

Main teaching phase

This is where the teacher takes the students from what they did know as demonstrated by the starter to what they will know. This requires structure. Sharing the learning objective, scaffolding the examples, setting the pace and increasing the challenge all form good practice for this phase of the lesson. The lessons are structured and laid out in such a way to enable this to be achieved while accommodating different teaching styles.
Whether it’s through the use of a place value table, fraction wall or interactive Geogebra activity students gain a conceptual understanding of the learning objective. If additional practice is needed interactive Excel files provide unlimited questions and their solutions and are available in most lessons.

Mathematics Lessons

Teaching activity for a lesson on Velocity – Time Graphs

Consolidation Phase

Every teacher will have their own teaching style but people best learn by doing. That’s why every mathematics lessons includes differentiated problems for the class to complete. The teacher decides how the class works through the problems whether in pairs, small groups or independently. The consolidation questions are laid out in a way for the teacher to feedback to the class during the lesson so pace and challenge are maintained. Further consolidation practice is available through a printable worksheet with solutions, jigsaw puzzle or multiple choice PowerPoint quiz all of which can be used for homework or exam revision.

Mathematics Lessons

Consolidation activity for a lesson on Velocity – Time Graphs

The plenary

Whether the teacher wants to extend the learning or assess the progress that has been made getting the plenary right is crucial to ensuring a positive and purposeful end to the lesson. Students want to feel they have achieved something and have the chance to apply their learning. The plenaries tend to take between 10 to 12 minutes and are designed to ensure the students and teacher have a full understanding of the progress that has been made in the lesson.

Mathematics Lessons

Plenary activity for a lesson on Velocity – Time Graphs

 

2 thoughts on “Mathematics Lessons

  1. Denise Phillips says:

    Hi,
    Although this is aimed at secondary school it is great to read as planning shows a clear aim to scaffold a child’s thinking to deepen their procedural and conceptual understanding thus developing mathematical thinking. Great starter to assess starting knowledge and begin the children’s reasoning from the start. Often I read how lessons are planned to practice then reason – children need to start reasoning from the start – they need to start thinking from the start and applying their knowledge and developing their language.
    I will be keeping an idea on this blog and using some of these ideas/structures to develop my own questions for the children within my junior school.
    Denise

    • mrmath_admin says:

      Thanks for your comment Denise. I agree it’s important for students to start reasoning from the very start of the lesson as this helps get them ready for the main part. We have lots of middle school lessons on the site aimed for Year 7 students.
      Kind regards, Jonathan

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Mr Mathematics Blog

Sharing an Amount to a Given Ratio

There are three common methods for sharing an amount to a given ratio.  Depending on the age group and ability range I am teaching I would choose one approach over the other two. The three methods are: Using fractions Unitary method Using a table In this blog I will demonstrate each of the three methods […]

Plotting Scatter Graphs and Understanding Correlation

To introduce plotting scatter graphs and understanding correlation I ask students to think about the relationships between different variables and to describe how they might be related. Here’s my starter activity which students discuss in pairs then present to me on mini-whiteboards. When the students have had time to discuss the matching pairs we talk […]

Plotting Quadratic Graphs on Cartesian Axes

In recent examiner reports it is noted how important it is for students to understand the properties of a parabola  when plotting quadratic graphs on Cartesian axes.  Students who have a secure understanding of parabolas can use them to correct miscalculated values in their table of results and are more likely to attain full marks […]