Percentages

Scheme of work: GCSE Foundation: Year 10: Term 3: Percentages

Prerequisite Knowledge

• Multiply and divide by powers of ten.
• Recognise the per cent symbol (%)
• Understand that per cent relates to â€˜number of parts per hundredâ€™
• Write one number as a fraction of another
• Calculate equivalent fractions

Success Criteria

• Define percentage as â€˜number of parts per hundred.
• Interpret fractions and percentages as operators
• Interpret percentages as a fraction or a decimal
• Interpret percentages changes as a fraction or a decimal
• Interpret percentage changes multiplicatively
• Express one quantity as a percentage of another
• Compare two quantities using percentages
• Work with percentages greater than 100%;
• Solve problems involving percentage change
• Solve problems involving percentage increase/decrease
• Solve problems involving original value problems
• Solve problems involving simple interest including in financial mathematics

Key Concepts

• Use the place value table to illustrate the equivalence between fractions, decimals and percentages.
• To calculate a percentage of an amount without calculator students need to be able to calculate 10% of any number by dividing by 10.
• To calculate a percentage of an amount with a calculator students should be able to convert percentages to decimals mentally and use the percentage function.
• Equivalent ratios are useful for calculating the original amount after a percentage change.
• To calculate the multiplier for a percentage change students need to understand 100% as the original amount. E.g., 10% decrease represents 10% less than 100% = 0.9.

Common Misconceptions

• Students often consider percentages to be limited to 100%. A key learning point is to understand how percentages can exceed 100%.
• Students sometimes confuse 70% with a magnitude of 70 rather than 0.7.
• Students can confuse 65% with 1/65rather than 65/100.

Percentages Resources

Mr Mathematics Blog

Planes of Symmetry in 3D Shapes

Planes of Symmetry in 3D Shapes for Key Stage 3/GCSE students.

Use isometric paper for hands-on learning and enhanced understanding.

GCSE Trigonometry Skills & SOH CAH TOA Techniques

Master GCSE Math: Get key SOH-CAH-TOA tips, solve triangles accurately, and tackle area tasks. Ideal for students targeting grades 4-5.

Regions in the Complex Plane

Explore Regions in the Complex Plane with A-Level Further Maths: inequalities, Argand diagrams, and geometric interpretations.