Pythagoras’ Theorem and Right-Angled Triangles

Students are guided through the discovery of Pythagoras’ Theorem and learn how to apply it to calculate an unknown side in a right-angled triangle.  As learning progresses they are challenged to solve a range of problems using Pythagoras’ Theorem.

This unit takes place in  and is follows finding the area of 2D and 3D shapes.


Pythagoras’ Theorem and Right-Angled Triangles Lessons

 



Prerequisite Knowledge
  • Draw and measure line segments and angles in geometric figures, including interpreting scale drawings
  • Apply the properties of angles at a point, angles at a point on a straight line, vertically opposite angles
  • Derive and use the sum of angles in a triangle and use it to deduce the angle sum in any polygon

Key Concepts
  • For a right-angled triangle, Pythagoras’ Theorem states that a2 +b2 = c2 where c is the hypotenuse.

Pythagoras' Theorem and Right-Angled Triangles

  • A Pythagorean triple is a set of three integers that exactly fits the Pythagoras relationship.
  • If the lengths of the three sides of a triangle obey Pythagoras’ Theorem the triangle is right-angled.
  • Students should look for right-angled triangles in shapes with problem solving with Pythagoras’ Theorem.


Working mathematically

Develop fluency

  • Use language and properties precisely to analyse 2-D and 3-D shapes.
  • Use algebra to generalise the structure of arithmetic, including to formulate mathematical relationships
  • Select and use appropriate calculation strategies to solve increasingly complex problems

Reason mathematically

  • Make and test conjectures about patterns and relationships; look for proofs or counter-examples
  • Begin to reason deductively in geometry, number and algebra, including using geometrical constructions

Solve problems

  • Develop their mathematical knowledge, in part through solving problems and evaluating the outcomes, including multi-step problems
  • Develop their use of formal mathematical knowledge to interpret and solve problems
  • Begin to model situations mathematically and express the results using a range of formal mathematical representations
  • Select appropriate concepts, methods and techniques to apply to unfamiliar and non-routine problems

Subject Content

Geometry and measures

  • Apply angle facts, triangle congruence, similarity and properties of quadrilaterals to derive results about angles and sides, including Pythagoras’ Theorem, and use known results to obtain simple proofs
  • Use Pythagoras’ Theorem in similar triangles to solve problems involving right-angled triangles
  • Interpret mathematical relationships both algebraically and geometrically.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Mr Mathematics Blog

Angles in Polygons

There are two key learning points when solving problems with angles in polygons.  The first is to understand why all the exterior angles of a polygon have a sum of 360°.  The second is to understand the interior and exterior angles appear on the same straight line. Students can be told these two facts and […]

Getting Ready for a New School Year

When getting ready for a new school year I have a list of priorities to work through. Knowing my team have all the information and resources they need to teach their students gives me confidence we will start the term in the best possible way.  Mathematics Teaching and Learning Folder All teachers receive a folder […]

Mathematics OFSTED Inspection – The Deep Dive

Earlier this week, my school took part in a trial OFSTED inspection as part of getting ready for the new inspection framework in September 2019. This involved three Lead Inspectors visiting our school over the course of two days. The first day involved a ‘deep dive’ by each of the Lead Inspectors into Mathematics, English […]