Ratio and Proportion

Students learn how to simplify and use equivalent ratios to calculate proportionate amounts.  They use this knowledge to model direct and indirect variation problems.

This unit takes place in Term 1 of Year 10 and leads on to indices and standard form.


Ratio and Proportion Lessons
Revision Lessons


Prerequisite Knowledge
  • solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts
  • solve problems involving the calculation of percentages
  • solve problems involving unequal sharing and grouping using knowledge of fractions and multiples

Success Criteria
  • use ratio notation, including reduction to simplest form
  • express a multiplicative relationship between two quantities as a ratio
  • understand and use proportion as equality of ratios
  • relate ratios to fractions
  • express the division of a quantity into two parts as a ratio
  • apply ratio to real contexts and problems (such as those involving conversion, comparison, scaling, mixing, concentrations)
  • understand and use proportion as equality of ratios
  • solve problems involving direct and inverse proportion, including graphical and algebraic representations
  • understand that X is inversely proportional to Y is equivalent to X is proportional to 1/Y
  • construct and interpret equations that describe direct and inverse proportion


Key Concepts
  • It is important for students to visualise equivalent and ratios by categorising objects and breaking them down into smaller groups.
  • It is important to apply equivalent ratios when solving problems involving proportion. Including the use of the unitary method.
  • To share amount given a ratio it is necessary to find the value of a single share.
  • When two or more measurements increase at a linear rate they are in direct proportion. Inverse proportion is when one increases at the same rate the other decreases.
  • The constant of proportionality, k, is used to define the rate at which two or more measures change.
  • Recognising the graphical representations of direct and indirect proportion is vital to understanding the relationship between two measurements.

Common Misconceptions
  • Ratios amounts are often confused with fractions involving the same digits. For instance 2 : 3 is confused with 2⁄3 or 1 : 2 = 1⁄2.
  • When solving problems involving proportion students tend to struggle with forming a ratio. For instance, 3 apples cost 45p would form the ratio apples : cost.
  • When writing ratios into the form 1 : n students incorrectly assume that n has to be an integer or greater than 1.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Mr Mathematics Blog

Solving Inequalities using a Number Line

Students should be able to represent the solutions to an inequality on a number line, using set notation or as a list of integer values.  Here’s how I teach using the balance method for solving inequalities using a number line. Matching inequalities, Number sets and Number Lines At the start of the lesson students recap […]

Practical Tips for Using Mini-Whiteboards in a Mathematics Lesson

In this blog I will share some practical tips for using mini-whiteboards in a mathematics lesson.  I use mini-whiteboards nearly every lesson because they help the students show me the progress they are making.  When I understand what the misconceptions are I am able to address them in subsequent examples as part of my feedback.  […]

Showing Progress during a Mathematics Lesson

Demonstrating student progression during a mathematics lesson is about understanding the learning objective and breaking that down into explicit success criteria. Using Success Criteria Take, for example, a lesson on calculating the area of compound rectilinear shapes. The intended learning objective was written on the main whiteboard. Success criteria were used to break down the individual […]