Your Basket 0 items - £0.00

There are three common methods for sharing an amount to a given ratio. Depending on the age group and ability range I am teaching I would choose one approach over the other two.

The three methods are:

- Using fractions
- Unitary method
- Using a table

In this blog I will demonstrate each of the three methods for the same problem.

Nikki and Gemma share £36 in the ratio 4 : 5.

Work out how much Nikki and Gemma each receive.

Change the shares for each person in to a fraction.

Nikki’s Share = 4/(4+5) = 4/9

Gemma’s Share = 5/(4+5) = 5/9

Calculate each fraction of the total amount.

Nikki receives £36 × 4/9 = £16. Gemma receives £35 × 5/9 = £20.

I use this approach when teaching more able students as it reinforces the link between ratio and proportion. The fractions are seen as proportions of the total amount.

The unitary method emphasises the need to find the value of one share by dividing the total amount by the total number of shares. This can be taught illustratively or with clear writing frames.

The illustrative approach represents each share as a box. Each box contains an equal proportion of the total amount. Illustrating the shares as boxes helps the younger and less able students to visualise the importance of finding one share and using that to split the amount correctly.

**Unitary method using writing frames to find the value of a single share**

**Unitary Method using Writing Frames**

**Step 1:** Find the total number of shares: 4 + 5 = 9.

**Step 2:** Find the value of one share: £36 ÷ 9 = £4 per share

**Step 3:** Multiply each part of the ratio by the value of one share.

Nikki = 4 shares × £4 = £16, Gemma = 5 shares × £4 = £20

The written unitary method is my most common approach for teaching how to share an amount to a ratio as it breaks the problem down into three intuitive stages.

The first column of the table uses the ratio given in the question. Subsequent columns are multiples of the first column. This method works well when the total shares is a factor of the amount.

I use this method for lower ability students and those in key stage 3. It reinforces multiples and patterns while providing a visual representation of the increasing shares.

March 10, 2019

When calculating the volume of a pyramid we can substitute the values of the length, width and perpendicular height into the formula V = 1/3 lwh. In my experience this is often provided for the students with little explanation as to why a volume of a pyramid is exactly one third the volume of a […]

March 4, 2019

When teaching solving 3D problems using trigonometry we begin the lesson with a recap of Pythagoras’ Theorem and the three trigonometric ratios. We do this by matching the ratio and equations to the respective right-angled triangle. Students are encouraged to work in pairs and to show the diagrams as part of the working out on […]

January 29, 2019

When I teach rounding to a significant figure, I ask the class to discuss in pairs or small groups a definition for the word significant. It is a word that all the students have heard before but not all are able to define. After 2 or 3 minutes of conversation I ask the students to […]