Sharing an Amount to a Given Ratio

There are three common methods for sharing an amount to a given ratio.  Depending on the age group and ability range I am teaching I would choose one approach over the other two.

The three methods are:

  1. Using fractions
  2. Unitary method
  3. Using a table

In this blog I will demonstrate each of the three methods for the same problem.

Nikki and Gemma share £36 in the ratio 4 : 5.

Work out how much Nikki and Gemma each receive.

Sharing an Amount to a Given Ratio Using fractions

Change the shares for each person in to a fraction.

Nikki’s Share = 4/(4+5) = 4/9

Gemma’s Share = 5/(4+5) = 5/9

Calculate each fraction of the total amount.

Nikki receives £36 × 4/9 = £16.  Gemma receives £35 × 5/9 = £20.

I use this approach when teaching more able students as it reinforces the link between ratio and proportion.  The fractions are seen as proportions of the total amount.

Sharing an Amount to a Given Ratio Using the Unitary Method

The unitary method emphasises the need to find the value of one share by dividing the total amount by the total number of shares.  This can be taught illustratively or with clear writing frames.

Unitary method using boxes to illustrate the value of a single share.

Sharing an Amount to a Given Ratio

The illustrative approach represents each share as a box.  Each box contains an equal proportion of the total amount.   Illustrating the shares as boxes helps the younger and less able students to visualise the importance of finding one share and using that to split the amount correctly.

Unitary method using writing frames to find the value of a single share

Unitary Method using Writing Frames

Step 1:  Find the total number of shares:  4 + 5 = 9.

Step 2:  Find the value of one share:  £36 ÷ 9 = £4 per share

Step 3:  Multiply each part of the ratio by the value of one share.

Nikki = 4 shares × £4 = £16, Gemma = 5 shares × £4 = £20

The written unitary method is my most common approach for teaching how to share an amount to a ratio as it breaks the problem down into three intuitive stages.

Sharing an Amount to a Given Ratio Using a Table

The first column of the table uses the ratio given in the question.  Subsequent columns are multiples of the first column.  This method works well when the total shares is a factor of the amount.

Sharing an Amount to a Ratio

I use this method for lower ability students and those in key stage 3.  It reinforces multiples and patterns while providing a visual representation of the increasing shares.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Mr Mathematics Blog

Calculating Instantaneous Rates of Change

When calculating instantaneous rates of change students need to  visualise the properties of the gradient for a straight line graph.   I use the starter activity to see if they can match four graphs with their corresponding equations. The only clue is the direction and steepness of the red lines in relation to the blue line […]

Converting Between Fractions, Decimals and Percentages

Fractions, decimals and percentages are ways of showing a proportion of something.  Any fraction can be written as a decimal, and any decimal can be written as a percentage.  In this blog I discuss how to use the place value table and equivalent fractions to illustrate how fractions, decimals and percentages are connected. You can […]

Comparing Datasets using the Mean and Range

In my experience, students, in general, find the concept of a mean straightforward to calculate and understand. However, the mean alone does not provide a complete picture of a set of data. To achieve this, a measure of spread is also required. The range is the simplest measure that can be used for this. Not […]