Your Basket 0 items - £0.00

Students are guided to discover the Sine, Cosine and Tangent ratios of right-angled triangles. As learning progresses they learn how to calculate a missing angle and length in right-angled triangles and solve problems involving 3D shapes.

This topic takes place in Year 10 Term 3 and follows on from Pythagoras’ Theorem.

**Prerequisite Knowledge**

- Express a multiplicative relationship between two quantities
- Understand and use proportion as equality of ratios
- Know the formulae for: Pythagoras’ theorem, a2 + b2 = c2
- Apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results about angles and sides, including Pythagoras’ Theorem and the fact that the
- Base angles of an isosceles triangle are equal, and use known results to obtain simple proofs

**Success Criteria**

- Know the trigonometric ratios, Sin ϑ = Opp/Hyp, Cos ϑ = Adj/Hyp, Tan ϑ = Opp/Adj
- Apply them to find angles and lengths in right-angled triangles and, where possible, general triangles in two and three dimensional figures
- Know the exact values of Sin ϑ and Cos Sin ϑ for ϑ = 0°, 30°, 45°, 60°, and 90°.; know the exact value of Tan ϑ for 0°, 30°, 45° and 60°.

**Key Concepts**

- Sin, Cos and Tan are trigonometric functions that are used to find lengths and angles in right-angled triangles.
- The ‘hypotenuse’ is opposite the right angle, the ‘opposite’ refers to the side that is opposite the angle in question and ‘adjacent’ side runs adjacent to the angle.
- The inverse operations of sin, cos and tan are pronounced arcos, arcsin and arctan.
- Students need to be confident using diagram notation to draw 2D diagrams from problems in 3D.

**Common Misconceptions**

- Students often have difficulty knowing which trigonometric ratio to apply. Encourage them to clearly label the sides to identify the correct ratio.
- Use SOHCAHTOA as a memory aid as students often forget the trigonometric ratios.
- When using trigonometric ratios to calculate angles students often forget to use the inverse functions.
- Students often try to apply right-angled formulae to non-right-angled triangles.

June 5, 2019

Students should be able to represent the solutions to an inequality on a number line, using set notation or as a list of integer values. Here’s how I teach using the balance method for solving inequalities using a number line. Matching inequalities, Number sets and Number Lines At the start of the lesson students recap […]

May 1, 2019

In this blog I will share some practical tips for using mini-whiteboards in a mathematics lesson. I use mini-whiteboards nearly every lesson because they help the students show me the progress they are making. When I understand what the misconceptions are I am able to address them in subsequent examples as part of my feedback. […]

April 17, 2019

Demonstrating student progression during a mathematics lesson is about understanding the learning objective and breaking that down into explicit success criteria. Using Success Criteria Take, for example, a lesson on calculating the area of compound rectilinear shapes. The intended learning objective was written on the main whiteboard. Success criteria were used to break down the individual […]