Your Basket 0 items - £0.00

**Scheme of work: GCSE Foundation: Year 9: Term 2: Algebraic Expressions**

- Use simple formulae
- generate and describe linear number sequences
- express missing number problems algebraically
- find pairs of numbers that satisfy an equation with two unknowns

- use and interpret algebraic notation, including:
- ab in place of a x b
- 3y in place of 3 x y
- a
^{2}in place of a x a, a^{3}in place of a x a x a and a^{2}b in place of a x a x b - a/b in place of a / b
- coefficients written as fractions rather than decimals
- brackets
- simplify and manipulate algebraic expressions by:
- collecting like terms
- multiplying a single term over a bracket
- taking out common factors
- expanding products of two or more binomials
- factorising quadratic expressions of the form x
^{2}+ bx + c, including the difference of two squares - simplifying expressions involving sums, products and powers including the laws of indices

- Students need to appreciate that writing with algebra applies the rules of arithmetic to unknown numbers, which are represented as letters.
- It is important to define the difference between an expression, equation and formula.
- The multiplication symbol is omitted when using algebraic notation to avoid confusion and divisions are written as using simplified fractions.
- Linear (x), quadratic (x
^{2}) and cube terms (x^{3})cannot be collected together. - Understanding quadratics in the general form (x
^{2}+ bx + c) helps to factorise and expand expressions.

- When collecting like terms, students often forget ab = ba = a x b and b + a = + b.
- When multiplying out brackets students incorrectly forget to multiply the second term, especially with negative products. E.g., 2(x + 5) = 2x + 10 and -2(x + 5) = -2x – 10
- When factorising expressions, a common misconception is to not fully factorise. E.g., 18x + 24y can be written as 9x + 12y
- When expanding the product of two or more brackets students often incorrectly collect the like terms associated to the linear unknown.

March 12, 2024

Planes of Symmetry in 3D Shapes for Key Stage 3/GCSE students.

Use isometric paper for hands-on learning and enhanced understanding.

March 8, 2024

Master GCSE Math: Get key SOH-CAH-TOA tips, solve triangles accurately, and tackle area tasks. Ideal for students targeting grades 4-5.

March 7, 2024

Explore Regions in the Complex Plane with A-Level Further Maths: inequalities, Argand diagrams, and geometric interpretations.