Performing and Describing Transformations

At the start of this unit students learn how to perform and describe reflections, rotations, translations and enlargements on a grid.  As learning progresses they are challenged to describe a combination of transformations using the correct terminology.

This topic takes place in Year 9 Term 5 and is followed by transforming graphical functions.


Performing and Describing Transformations Lessons
Revision Lessons

Prerequisite Knowledge

  • Use conventional terms and notations: points, lines, vertices, edges, planes, parallel lines, perpendicular lines, right angles, polygons, regular polygons and polygons with reflection and/or rotation symmetries;
  • Identify an order of rotational and reflective symmetry for two dimensional shapes
  • Use the standard conventions for labelling and referring to the sides and angles of triangles; draw diagrams from written description
  • Recognise linear functions in the form y = ± a and x = ± 

Success Criteria

  • Identify, describe and construct congruent and similar shapes, including on coordinate axes, by considering rotation, reflection, translation and enlargement (including fractional and negative scale factors)

Key Concepts

  • An object is transformed to create an image.
  • Rotation, Translation and Reflections involve congruent objects and images whereas enlargement leads to the object being similar to the image.
  • Translation vectors are used to describe movements along Cartesian axes.
  • When reflecting objects the image is always the same distance from the line of reflection as the object.
  • Rotations and enlargements are constructed from a centre.
  • A negative scale factor transforms the object through the centre.

Common Misconceptions

  • Translation vectors can incorrectly be written using the name notation as coordinate pairs.
  • Translations, Rotations, Enlargement and Reflections all come under the umbrella term of transformation. Students often confuse the term translation for transformation.
  • Students often have more difficulty describing single transformations rather than performing them.
  • Enlargements can involve making a shape smaller as well as bigger. Fractional scale factors between 0 and 1, not negative, decrease the size.

Go ad-free and get access to over 500 lessons

Mr Mathematics Blog

Two-Way Tables and Frequency Trees

Problem solving lesson on two-way tables and frequency trees.

Plotting Curved Graphs

Three typical exam questions to revise on plotting quadratic, cubic and reciprocal graphs.

Interpreting Cumulative Frequency Graphs

Linking cumulative frequency graphs to ratio, percentages and financial mathematics.