Performing and Describing Transformations

At the start of this unit students learn how to perform and describe reflections, rotations, translations and enlargements on a grid.  As learning progresses they are challenged to describe a combination of transformations using the correct terminology.

This topic takes place in Year 9 Term 5 and is followed by transforming graphical functions.

Performing and Describing Transformations Lessons
Revision Lessons

Prerequisite Knowledge

  • Use conventional terms and notations: points, lines, vertices, edges, planes, parallel lines, perpendicular lines, right angles, polygons, regular polygons and polygons with reflection and/or rotation symmetries;
  • Identify an order of rotational and reflective symmetry for two dimensional shapes
  • Use the standard conventions for labelling and referring to the sides and angles of triangles; draw diagrams from written description
  • Recognise linear functions in the form y = ± a and x = ± a

Success Criteria

  • Identify, describe and construct congruent and similar shapes, including on coordinate axes, by considering rotation, reflection, translation and enlargement (including fractional and negative scale factors)

Key Concepts

  • An object is transformed to create an image.
  • Rotation, Translation and Reflections involve congruent objects and images whereas enlargement leads to the object being similar to the image.
  • Translation vectors are used to describe movements along Cartesian axes.
  • When reflecting objects the image is always the same distance from the line of reflection as the object.
  • Rotations and enlargements are constructed from a centre.
  • A negative scale factor transforms the object through the centre.

Common Misconceptions

  • Translation vectors can incorrectly be written using the name notation as coordinate pairs.
  • Translations, Rotations, Enlargement and Reflections all come under the umbrella term of transformation. Students often confuse the term translation for transformation.
  • Students often have more difficulty describing single transformations rather than performing them.
  • Enlargements can involve making a shape smaller as well as bigger. Fractional scale factors between 0 and 1, not negative, decrease the size.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Mr Mathematics Blog

Solving Inequalities using a Number Line

Students should be able to represent the solutions to an inequality on a number line, using set notation or as a list of integer values.  Here’s how I teach using the balance method for solving inequalities using a number line. Matching inequalities, Number sets and Number Lines At the start of the lesson students recap […]

Practical Tips for Using Mini-Whiteboards in a Mathematics Lesson

In this blog I will share some practical tips for using mini-whiteboards in a mathematics lesson.  I use mini-whiteboards nearly every lesson because they help the students show me the progress they are making.  When I understand what the misconceptions are I am able to address them in subsequent examples as part of my feedback.  […]

Showing Progress during a Mathematics Lesson

Demonstrating student progression during a mathematics lesson is about understanding the learning objective and breaking that down into explicit success criteria. Using Success Criteria Take, for example, a lesson on calculating the area of compound rectilinear shapes. The intended learning objective was written on the main whiteboard. Success criteria were used to break down the individual […]