Performing and Describing Transformations

At the start of this unit students learn how to perform and describe reflections, rotations, translations and enlargements on a grid.  As learning progresses they are challenged to describe a combination of transformations using the correct terminology.

This topic takes place in Year 9 Term 5 and is followed by transforming graphical functions.


Performing and Describing Transformations Lessons
Revision Lessons

Prerequisite Knowledge

  • Use conventional terms and notations: points, lines, vertices, edges, planes, parallel lines, perpendicular lines, right angles, polygons, regular polygons and polygons with reflection and/or rotation symmetries;
  • Identify an order of rotational and reflective symmetry for two dimensional shapes
  • Use the standard conventions for labelling and referring to the sides and angles of triangles; draw diagrams from written description
  • Recognise linear functions in the form y = ± a and x = ± 

Success Criteria

  • Identify, describe and construct congruent and similar shapes, including on coordinate axes, by considering rotation, reflection, translation and enlargement (including fractional and negative scale factors)

Key Concepts

  • An object is transformed to create an image.
  • Rotation, Translation and Reflections involve congruent objects and images whereas enlargement leads to the object being similar to the image.
  • Translation vectors are used to describe movements along Cartesian axes.
  • When reflecting objects the image is always the same distance from the line of reflection as the object.
  • Rotations and enlargements are constructed from a centre.
  • A negative scale factor transforms the object through the centre.

Common Misconceptions

  • Translation vectors can incorrectly be written using the name notation as coordinate pairs.
  • Translations, Rotations, Enlargement and Reflections all come under the umbrella term of transformation. Students often confuse the term translation for transformation.
  • Students often have more difficulty describing single transformations rather than performing them.
  • Enlargements can involve making a shape smaller as well as bigger. Fractional scale factors between 0 and 1, not negative, decrease the size.

Mr Mathematics Blog

Indices and Surds AS Mathematics

AS Mathematics Scheme of work for indices and surds

Pi Day Activities for Secondary Schools

Fun activities to celebrate Pi Day with your mathematics class.

Grade 5 Maths Problems

Problem solving lesson for students aiming for a Grade 5.