Patterns and Sequences

Students learn how to generate and describe sequences on a term-to-term and position-to-term basis.  Learning progresses from plotting and reading coordinates in the first quadrant to describing geometric sequences using the nth term.

This unit takes place in Term 1 of Year 10 and is followed by the properties of straight line graphs.


Patterns and Sequences Lessons
Revision Lessons


Prerequisite Knowledge

use simple formulae

  • generate and describe linear number sequences
  • express missing number problems algebraically

Pupils need to be able to use symbols and letters to represent variables and unknowns in mathematical situations that they already understand, such as:

  • missing numbers, lengths, coordinates and angles
  • formulae in mathematics and science
  • equivalent expressions (for example, a + b = b + a)
  • generalisations of number patterns

Success Criteria
  • generate terms of a sequence from either a term-to-term or a position-to-term rule
  • recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions, Fibonacci type sequences, quadratic sequences, and simple geometric progressions ( r n
  • where n is an integer, and r is a rational number > 0 or a surd) and other sequences
  • deduce expressions to calculate the nth term of linear and quadratic sequences


Key Concepts
  • The nth term represents a formula to calculate any term a sequence given its position.
  • To describe a sequence it is important to consider the differences between each term as this determines the type of pattern.
  • Quadratic sequences have a constant second difference. Linear sequences have a constant first difference.
  • Geometric sequences share common multiplying factor rather than common difference.

Common Misconceptions
  • Students often show a lack of understanding for what ‘n’ represents.
  • A sequence such as 1, 4, 7, 10 is often described as n + 3 rather than 3n – 2.
  • Quadratic sequences can involve a linear as well as a quadratic component.
  • Calculating the product of negative numbers when producing a table of results can lead to difficulty.
  • The nth term for a geometric sequence is in the form arn-1 rather than arn.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Mr Mathematics Blog

Angles in Polygons

There are two key learning points when solving problems with angles in polygons.  The first is to understand why all the exterior angles of a polygon have a sum of 360°.  The second is to understand the interior and exterior angles appear on the same straight line. Students can be told these two facts and […]

Getting Ready for a New School Year

When getting ready for a new school year I have a list of priorities to work through. Knowing my team have all the information and resources they need to teach their students gives me confidence we will start the term in the best possible way.  Mathematics Teaching and Learning Folder All teachers receive a folder […]

Mathematics OFSTED Inspection – The Deep Dive

Earlier this week, my school took part in a trial OFSTED inspection as part of getting ready for the new inspection framework in September 2019. This involved three Lead Inspectors visiting our school over the course of two days. The first day involved a ‘deep dive’ by each of the Lead Inspectors into Mathematics, English […]