Your Basket 0 items - £0.00

Students learn how to generate and describe sequences on a term-to-term and position-to-term basis. Learning progresses from plotting and reading coordinates in the first quadrant to describing geometric sequences using the nth term.

This unit takes place in Term 1 of Year 10 and is followed by the properties of straight line graphs.

use simple formulae

- generate and describe linear number sequences
- express missing number problems algebraically

Pupils need to be able to use symbols and letters to represent variables and unknowns in mathematical situations that they already understand, such as:

- missing numbers, lengths, coordinates and angles
- formulae in mathematics and science
- equivalent expressions (for example, a + b = b + a)
- generalisations of number patterns

- generate terms of a sequence from either a term-to-term or a position-to-term rule
- recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions, Fibonacci type sequences, quadratic sequences, and simple geometric progressions ( r n
- where n is an integer, and r is a rational number > 0 or a surd) and other sequences
- deduce expressions to calculate the nth term of linear and quadratic sequences

- The nth term represents a formula to calculate any term a sequence given its position.
- To describe a sequence it is important to consider the differences between each term as this determines the type of pattern.
- Quadratic sequences have a constant second difference. Linear sequences have a constant first difference.
- Geometric sequences share common multiplying factor rather than common difference.

- Students often show a lack of understanding for what ānā represents.
- A sequence such as 1, 4, 7, 10 is often described as n + 3 rather than 3n ā 2.
- Quadratic sequences can involve a linear as well as a quadratic component.
- Calculating the product of negative numbers when producing a table of results can lead to difficulty.
- The nth term for a geometric sequence is in the form ar
^{n-1}rather than ar^{n}.

July 28, 2021

How to promote great behaviour in your classroom.

July 27, 2021

Visual and algebraic methods for writing a single column vector.

July 15, 2021

Eight calculator based maths problems for students aiming at or trying to consolidate a grade 4.